
	CprE 3710x Lab 11
 Electrical and Computer Engineering
Iowa State University
	Programming a Game in Assembly

Lab 11
[bookmark: _ey90c8o0ijqq]1.0 Objectives
In this lab you will create a video game in assembly language that runs on the i281 simulator.

[bookmark: _81x9ln7813b]2.0 Parts List
	Quantity
	Item

	1
	Computer with access to the internet

	1
	Internet browser running the i281 Simulator

	-
	Access to the Quartus Program

	1
	FPGA Board

[bookmark: _4vsp9hg1ui2a]3.0 Background
For this lab you will be using the i281 simulator to code your video game. Below is a reminder of the i281 assembly instructions that were introduced in lab 10.

[bookmark: _456r0mumxamo]3.1 Assembly Instructions
Assembly is a low-level programming language that strongly corresponds to the machine code of the underlying computer architecture.

	Instruction
	Function
	Use Format

	NOOP
	No operation
	NOOP

	INPUTC
	Input into code memory
	INPUTC [destination]

	INPUTCF
	Input into code memory with an offset specified by a register
	INPUTCF [destination + offset]

	INPUTD
	Input into data memory
	INPUTD [destination]

	INPUTDF
	Input into data memory with an offset specified by a register
	INPUTDF [destination + offset]

	MOVE
	Move the contents of one register into another
	MOVE register1, register2

	LOADI
	Load immediate value
	LOADI register, number

	ADD
	Add two registers
	ADD register1, register2

	Instruction
	Function
	Use Format

	ADDI
	Add an immediate value to a register
	ADDI register, number

	SUB
	Subtract two registers
	SUB register1, register2

	SUBI
	Subtract an immediate value from a register
	SUB2 register, number

	LOAD
	Load from a data memory address into a register
	LOAD register, [source]

	LOADF
	Load with an offset specified by another register
	LOADF register, [source + offset]

	STORE
	Store a register into a data memory address
	STORE register, [source]

	STOREF
	Store with an offset specified by another register
	STOREF [source + offset], register

	SHIFTL
	Shift left all bits in a register
	SHIFTL register

	SHIFTR
	Shift right all bits in a register
	SHIFTR register

	CMP
	Compare the values in two registers
	CMP register1, register2

	JUMP
	Jump unconditionally to a specified address
	JUMP destination

	BRE
	Branch if equal
	BRE destination

	BRZ
	Branch if zero
	BRZ destination

	BRNE
	Branch if not equal
	BRNE destination

	BRNZ
	Branch if not zero
	BRNZ destination

	BRG
	Branch if greater
	BRG destination

	BRGE
	Branch if greater than or equal
	BRGE destination

[bookmark: _risj8q1bchh8]3.2 Formatting Assembly Code for the i281 Simulator
The simulator expects the code to be formatted in a certain way. In order to run your program, ensure that you follow these rules:
· Start your program with a .data header. This lets the compiler know what variables to store in the data memory.
· Variables are declared in the following format:
name-of-variable BYTE value-of-variable
Within this format value can be ? if it is unknown. It will default to 0.
· After your variables are declared, begin your program with the .code header. This tells the compiler where your code begins.
· When accessing the data memory in the program use the following format:
[name-of-variable]
· The four registers are named A, B, C, and D
· Locations can be specified in the program using the format
Address-label: instruction

[bookmark: _u6sr6hbr7x7b]4.0 Activity
You will create the video game in several steps. Each of them implements a component of the overall design. Watch the short video that introduces the game before you proceed.
[bookmark: _m1ag2033896l]4.1 Up Down Position Change
· Use switch 6 to move the bar up and down.
· Download its assembly code and study it.
· Modify the sample program that ships with the simulator.
· Load and run the Up-Down code so that the vertical bar displays in the fifth 7-segment display rather than the eighth.
· Demonstrate the working program to the TA.
[image:]
Figure C: Up-Down sample program.

[bookmark: _714ixhwvlwr0]

[bookmark: _zdfwjpdptgbh]4.2 Left Right Summon Object
· Modify the Left-Right sample program that comes with the simulator to display a moving [image:] instead of the horizontal bar [image:].
· Which parts of the program did you modify?
· Show your modified version to the TA.

Figure B: Left-Right sample program.
[bookmark: _906hlhw8hkfn]
[bookmark: _rjpcb5ifp476]

[bookmark: _hkvtas8bvyej]4.3 Create Objects
· Modify the Left-Right sample program such that the horizontal bar no longer bounces off the two sides. Instead it should start from the left, travel four positions to the right, and then repeat on the left again.
· This animation on the 7-segment displays should run in an infinite loop.
· Show your progress to the TA.
[image:]
Figure A: Bit representation for a seven-segment display.

[bookmark: _hyo00hvljaav]4.4 Cycle Creation
· This part requires you to combine the inputs from parts 4.2 and 4.3.
· Write an assembly program that animates a moving [image:] object.
· This object should start on the left, move four positions to the right, and then reappear on the left, similar to 4.4.
· The new challenge here is to alternate the start position of the object between up and down on each left-right cycle. That is, the initial placement should be down [image:] but after the object reaches the right-most 7-segment display it should reappear on the left in the up configuration [image:].
· This two-step animation should run in an infinite loop.
· Show your code and sample output to the TA.

[bookmark: _a8a400ilvc60]4.5 Add User Input
· Take your code from 4.4 and combine it with the unedited Up-Down example from the simulator. That is, add a user controlled vertical bar that is displayed on the right-most 7-segment display.
· Use switch 6 to control the bar.
· Don’t implement collision detection between the square and the bar yet.
· Demonstrate the working program to the TA.

[bookmark: _j271snrwb4m]

[bookmark: _z1admc2dy4vo]4.6 Collision Detection
· Add a check to see if the user’s vertical bar will collide with the square.
· Remember the shape in the rightmost segment will need to ensure that it doesn’t override the player’s sprite if they’re successful in avoiding collision.
· If a collision is detected the game is over and END should be displayed on 3 of the seven-segment displays.
· If the player was successful in avoiding a collision, the animation should display both the square object and the player’s vertical bar in the right-most 7-segment display. See the code for PONG on how to handle this.
· Demonstrate the final version of your video game to the TA.

image8.png
Assembly Code:

data
0.3 empty
4.7 display
8.1 shape
12 incDec
13..15 minMax
.code
[LOADI
1 LOADI
2 Loop: LOADF
3 STOREF
4 LOADI
5 Delay: SUBI
6 BRNE
7 STOREF
8 LOAD
9 ADD
10 LOADF

BYTE
BYTE
BYTE
BYTE

BYTE

[display+AL
D,

D,

Delay
[display+AL
D,

A,

D,

0,0,0,0
0,0,0,0
64,8,64,1
1

0,03

[
[
[shape+B]
c

15

[incDec]
D

[minMax+D+1]

Machine Code:

View Data Memory

Instruction Memory:

0011_00_00_00000000
0011_01_00_00000000
1001_10_01_00001000
1011_10_00_00000100
0011_11.00 00001111
0111_11_00_00000001
1111.00_01_11111110
1011_11_00_00000100
1000_11_00_00001100
0100_00_11_00000000

1001_11_11_00001110

image7.png
1"

12

13

14

15

16

17

18

RevDir:

cmP

BRE

Jump

LOADI

LOAD

SUB

STORE

Jump

D,
[incDec],

Loop

[incDec]

1101_00_11_00000000
1111_00_00_00000001
1110.00_00_11110100
0011_11_00_00000000
1000_10_00_00001100
0110_11_10_00000000
1010_11_00_00001100

1110.00.00 11101111

image6.png

image3.png
7-Segment Numeric

i
]

image2.png

image5.png
Assembly Code: Machine Code:

data View Data Memory
0.3 empty BYTE
4.7 display BYTE
8 switch BYTE 0

.code Instruction Memory:
0 Start: INPUTD [switch] 0001_00_10 00001000
1 LOAD C [switch] ~ 1000_10_00 00001000
2 SUBI C 64 0111_10_00_01000000
3 BRE up 1111_00_00_00000011
4 Down: LOADI D, 4 0011_11_00_00000100
5 STORE [display+3], D 1010_11_00_00000111
6 JUMP Start 1110_.00_00_11111001
7 Up: LOADI D, 2 0011_11_00_00000010
8 STORE [display+3], D 1010_11_00_00000111

9 Jump Start 1110.00 00 11110110

image4.png

image1.png

